

Potence Ratio and Path Coefficient Analysis for Some Quantitative Traits Of Maize (*Zea mays* L.) Hybrids Developed in Syria

Ramez Murshed Hasyan¹, Mouhammad Yahia Moualla² and Samir Ali AL-Ahmad⁽³⁾

ABSTRACT

Twenty-eight hybrids were created during 2008 cropping season. Hybrids were evaluated during 2009 cropping season for eight agronomic traits at the Agriculture Scientific Research Center. Homs, Syria. The present work aimed at determining the potency ratio and path analysis for grain yield (ton/ hectare), ear length (cm), ear diameter (cm), 100-kernel weight (g), number of kernel per row, starch, protein and oil content in grain (%). The potency ratio for most traits exceeded +1 except for starch, protein and oil content in grain; their potency ratios ranged from -1 and +1 indicated that the partial and over-dominance gene effects played major role in the inheritance of starch, protein and oil content in grain while over-dominance gene effects were the most importance in inheritance of grain yield, ear length, ear diameter, 100-kernel weight and number of kernel per row. Results showed that grain yield correlated positively and significantly correlated with ear diameter ($r=0.592^{**}$), oil content in grain ($r=0.337^{**}$), 100-kernel weight ($r=0.293^{**}$) and ear length ($r=0.222^{**}$). The path coefficient analysis estimates indicated that ear diameter, oil content in grain and ear length had high positive direct effects on grain yield indicating that indirect selection for these traits could lead to direct increase in grain yield.

Keywords: Maize, Grain yield, Potence ratio and Path Coefficient Analysis.

INTRODUCTION

Maize is the world's third leading cereal crop after wheat and rice (FAO, 2009). It is primarily used as a major food, feed grain for livestock and for industrial products (El-Hawary *et al.*, 2003). In Syria, maize comes third after wheat and barley as per planted area (Agriculture statistics publication 2008). However, increasing grain yield of cereal crops is considered one of the important national goals to face the growing needs of the population therefore, it has become necessary to develop genotypes which consistently show superior

performance. Plant breeder is interested in the estimation of gene effects in order to formulate the most advantageous breeding procedures for improvement of the attribute in question. Therefore, breeders need information about nature of gene action, phenotypic correlation and path analysis as well as other genetic parameters for yield, yield components and quality traits. Sprague, (1963) listed three major factors that must be considered and which may limit progress in the analysis of quantitative genetic variation: i. the number of genes involved. ii. the type of gene action. iii. the genotype-environment interaction.

Cockerham, (1961), Hallauer and Miranda Fo, (1981) and Eshghi and Akhundova, (2009) discussed the relation between type of gene action and the efficient breeding schemes; he concluded that all systems of selection are fruitful if gene action is entirely additive. El-Hosary and Abd El-Sattar, (1998); Khalil, (1999); Edward and Lamky, (2002) and Al-Kaddoussi *et al.*,

(1) Ph.D. Student in Agriculture Scientific Research Center at Homs, Homs, Syria Email : ram68ss@yahoo.com.

(2) Prof of Plant Breeding. In the Faculty. of Agric. Rector Tishreen Univ. Lattakia, Syria.

(3) Dr. Researcher. Depart. of Maize Res. G.C.S.A.R. Duma. Damascus. Syria.

Received on 3/4/2011 and Accepted for Publication on 29/5/2012.

(2004) found that over-dominance was involved in the inheritance of 100-kernel weight and grain yield per plant where potency ratio values were larger than (+1). Srđić *et al.*, (2008) and Haq *et al.*, (2010) reported that additive and non-additive gene effects were involved in determining the performance of genotypes. However, additive gene effects were more predominant for the inheritance of grain yield and oil content. Amit and Joshi (2007) concluded that non-additive gene action controlled the inheritance of oil, starch and protein contents in grain. Selvaraj *et al.*, (2006) derived that additive gene action was more important than non-additive gene action in controlling grain yield and oil content, while non-additive controlled the inheritance of protein contents.

Tabassum *et al.*, (2007) revealed that dominance absence and over dominance controlled the inheritance of 100-kernel weight. Sumathi *et al.*, (2007) mentioned that oil content had consistent negative and significant correlation with grain yield. On the other hand, Mittelmann *et al.*, (2003) found positive and significant correlation between grain yield and oil content, but this correlation was negative with protein content, however protein content exhibited significant positive correlation with oil content. Positive and significant correlation between 100-kernel weight and grain yield was reported by Shamim *et al.*, (2010). Many researchers revealed that the most important sources of variation in plant yield was the direct effects of 100-kernel weight (Abd El-Sattar and Motawea, 1999; Amin *et al.*, 2003 and Rafiq *et al.*, 2010). The main objectives were to estimate of potency ratio and path analysis for yield, its components and quality traits of 28 F_1 's hybrids of maize.

Materials and Methods

Eight inbred lines of yellow maize were used in this study i. e IL.256-06 (P_1), IL.136-06 (P_2), IL.840-06 (P_3), IL.291-06 (P_4), IL.322-06 (P_5), IL.233-06 (P_6), IL.767-06 (P_7) IL.257-06 (P_8) and were kindly provided by the Department of Maize Researches, General Commission for Scientific Agricultural Research (GCSAR), Ministry of Agriculture and Agrarian Reform, Damascus. Syria.

The eight parental inbred lines crossed in a half diallel fashion (Griffing's, 1956 method 4), in 2008 and evaluated in 2009 season at the Agriculture Scientific Research Center. Homs, Syria. The experiment was designed in randomized complete blocks (R.C.B.D) with three replications. Each, plot consisted of four ridges, 6m long and 70 cm width. Plants were spaced at 25 cm within ridge and thinned at one plant per hill after about 21 days of planting. Recommended cultural practices for maize production were applied during the growing season. Observations and measurements were recorded on 10 guarded plants chosen at random from each plot for grain yield (ton/hectare), ear length (cm), ear diameter (cm), 100-kernel weight (g), number of kernel per row, starch, protein and oil content in grain (%). Mather (1949) and Smith (1952) approaches used to estimate potency ratio (P) as follows:

$P = (F_1 - MP) / [0.5 \times (P_2 - P_1)]$ where: F_1 = the first generation mean, P_1 = the mean of the first parent, P_2 = the mean of the better parent and MP = mid parents value. Complete dominance is indicated when potency ratio is equal to (+1) or (-1). Partial dominance is the case when ratio between (+1) and (-1). Over-dominance indicated if ratio exceeds (± 1). The phenotypic correlation coefficients calculated as described by Snedecor and Cochran, (1981) .

$$r_{ph} = \sigma_{p_i p_j} / \sqrt{\sigma_{p_i}^2 \times \sigma_{p_j}^2}$$

Where: r_{ph} is phenotypic correlation coefficient; $\sigma_{p_i p_j}$ is the phenotypic covariance for the trait (i^{th}) and trait (j^{th}); $\sigma_{p_i}^2$ and $\sigma_{p_j}^2$ are the respective phenotypic standard deviation.

The path coefficient analysis was performed using the method proposed by Wright, (1934) and utilized by Dewey and Lu, (1959)

$$1 = P_{y0}^2 + P_{y1}^2 + P_{y3}^2 + (2P_{y1r12}P_{y2}) + (2P_{y1r13}P_{y3}) + (2P_{y2r23}P_{y3})$$

$$RI = |CD_i| / \sum_i |CD_i| \times 100$$

Where: p is the path coefficient analysis (direct effect for trait); y is the grain yield; r is the phenotypic correlation coefficients; CD_i is the coefficient of determination and

RI% is the relative importance. The PLAB STAT program was used for all calculations.

Results and Discussion

Potence Ratio Estimates

Potence ratios of grain yield, ear length, ear diameter,

100-kernel weight and number of kernel per row (Table 1) were larger than unity for most crosses indicating over-dominance gene effects played a major role in inheritance of these traits. This result is in agreement with Amer and Mosa, (2004), El-Shouny *et al.*, (2005), Tabassum *et al.*, (2007) and Srđić *et al.*, (2008).

Table (1). Potence ratio of grain yield, ear length, ear diameter and 100-kernel weight for 28 F₁ hybrids.

Hybrids	Grain yield g	Ear length cm	Ear diameter cm	100-kernel weight g
P₁ × P₂ 5.64	3.87	3.12	4.38	
P₁ × P₃ 4.56	6.84	3.54	7.37	
P₁ × P₄ 17.81	3.04	8.57	11.04	
P₁ × P₅ 5.26	2.43	20.14	2.38	
P₁ × P₆ 18.18	3.58	2.40	4.16	
P₁ × P₇ 10.19	2.65	10.76	2.94	
P₁ × P₈ 2.45	0.01	-0.18	-6.00	
P₂ × P₃ 41.75	23.35	15.92	3.24	
P₂ × P₄ 7.12	5.76	2.84	10.20	
P₂ × P₅ 27.74	2.59	3.65	2.13	
P₂ × P₆ 5.79	26.45	52.33	10.58	
P₂ × P₇ 27.26	4.89	7.06	1.55	
P₂ × P₈ 7.72	6.92	2.19	5.59	
P₃ × P₄ 7.28	7.08	2.26	4.41	
P₃ × P₅ 18.98	3.87	4.46	14.25	
P₃ × P₆ 4.80	14.89	8.12	6.42	
P₃ × P₇ 15.40	5.00	4.22	37.36	
P₃ × P₈ 8.87	11.62	2.65	7.70	
P₄ × P₅ 11.07	5.99	6.13	2.23	
P₄ × P₆ 41.27	8.21	1.69	18.25	
P₄ × P₇ 17.15	97.60	5.20	2.82	
P₄ × P₈ 70.42	4.66	30.00	18.72	
P₅ × P₆ 6.26	3.54	2.50	1.84	
P₅ × P₇ 68.70	5.37	17.80	14.87	
P₅ × P₈ 13.67	3.03	6.83	3.34	
P₆ × P₇ 8.46	9.78	3.93	1.24	
P₆ × P₈ 21.44	5.82	1.31	8.82	
P₇ × P₈ 22.14	3.33	5.12	2.51	

P₁, P₂, P₃, P₄, P₅, P₆, P₇ and P₈ denote to IL.256-06, IL.136-06, IL.840-06, IL.291-06, IL.322-06, IL.233-06, IL.767-06 and IL.257-06 respectively.

On the other hand, Potence ratio values of starch,

protein and oil content in grain (Table 2) were between

± 1 in some crosses however, partial dominance and over dominance effects played a major role in inheritance of these traits. Our results support the conclusion of [Tabassum, (2004), Selvaraj *et al.*, (2006) and Amit and

Joshi., (2007)] who reported that partial dominance and over dominance controlled with inheritance of starch, protein and oil content in grain.

Table (2). Potence ratio of number of kernel/ row, starch, protein and oil content in grain for 28 F₁ hybrids.

Hybrids	Kernels per row	kStarch mg	Protein mg	Oil mg
P₁ × P₂	2.93	16.00	-1.00	0.25
P₁ × P₃	1.76	1.30	0.45	2.39
P₁ × P₄	4.89	1.55	-0.57	4.82
P₁ × P₅	1.73	3.36	-0.23	23.00
P₁ × P₆	2.49	-0.95	0.40	0.20
P₁ × P₇	1.45	-2.54	0.04	0.68
P₁ × P₈	1.76	-1.06	1.16	-0.25
P₂ × P₃	8.39	-0.38	-0.10	0.14
P₂ × P₄	7.95	0.54	-2.30	-0.14
P₂ × P₅	6.82	0.81	-3.70	-0.34
P₂ × P₆	18.20	-1.67	0.45	0.01
P₂ × P₇	5.37	5.67	-0.37	4.71
P₂ × P₈	6.06	-0.84	1.18	0.09
P₃ × P₄	4.14	0.75	0.30	0.01
P₃ × P₅	61.67	2.37	-0.36	1.00
P₃ × P₆	4.83	6.92	-1.00	-0.60
P₃ × P₇	227.62	5.93	-13.00	1.15
P₃ × P₈	3.01	0.84	0.63	2.53
P₄ × P₅	3.81	-17.29	0	0.13
P₄ × P₆	18.25	0.39	-0.73	-0.14
P₄ × P₇	3.39	0.20	-0.20	0.66
P₄ × P₈	14.52	10.23	0.31	4.18
P₅ × P₆	4.60	1.00	-0.44	-0.18
P₅ × P₇	37.52	3.43	-0.41	-0.07
P₅ × P₈	3.07	-7.40	0.61	4.69
P₆ × P₇	3.57	0.50	3.80	1.86
P₆ × P₈	6.93	1.14	-0.25	-0.42
P₇ × P₈	2.78	0.22	-0.02	0.35

P₁, P₂, P₃, P₄, P₅, P₆, P₇ and P₈ denote to IL.256-06, IL.136-06, IL.840-06, IL.291-06, IL.322-06, IL.233-06, IL.767-06 and IL.257-06 respectively.

Phenotypic correlation

The phenotypic correlation coefficients estimated

among the eight studied characters including grain yield are presented in Table (3).

Table (3). Phenotypic correlation between studied traits and grain yield.

Traits	GYP
Ear length	0.222**
Ear diameter	0.592**
100-kernel weight	0.293**
Kernels per row	0.021
Starch content in grain	0.103
protein content in grain	-0.077
oil content in grain	0.337**

** indicated to significant at $P= 0.01$ respectively.

It is worthy noting that grain yield showed significant positive correlations with each of ear length ($r=0.222^{**}$), ear diameter ($r=0.592^{**}$), 100-kernel weight ($r=0.293^{**}$) and oil content in grain ($r=0.337^{**}$). This result indicates that selection, considering any of all these characters simultaneously may be effective in improving grain yield, especially if those characters had high heritability estimates. However, non-significant correlations were observed between grain yield and other traits. Some of these results were reported by Al-Ahmad, (2004), Sadek *et al.*, (2006), Soengas *et al.*, (2006), Aydin *et al.*, (2007), Najeeb *et al.*, (2009), Rafiq *et al.*, (2010), Shamim *et al.*,

(2010) and Wannows *et al.*, (2010).

Path Coefficient Analysis

Path coefficient analysis was performed to identify the important yield attributes by estimating the direct effects of traits contributing to yield and separating the direct from the indirect effects through other related traits by partitioning the correlation coefficient and finding out the relative importance of different characters as selection criteria. The estimates of direct and indirect effects of the three yield related traits viz. ear diameter, oil content in grain and ear length on grain yield are presented in Table (4).

Table (4). Direct and indirect effects of ear diameter, oil content of grain ear length vs. grain yield.

Source of variation	Effects
1.Ear diameter vs. Grain yield	
Direct effect	0.510
Indirect effect via Oil content in grain	0.022
Indirect effect via Ear length	0.049
Total	0.581
2.Oil content in grain vs. Grain yield	
Direct effect	0.318
Indirect effect via Ear diameter	0.036
Indirect effect via Ear length	-0.023
Total	0.331
3.Ear length vs. Grain yield	
Direct effect	0.186
Indirect effect via Ear diameter	0.134
Indirect effect via Oil content in grain	-0.040
Total	0.280

The data in Table (4) indicated that the ear diameter had the highest positive direct effect 0.510 followed by oil content in grain (0.318) and low direct effects for ear length (0.186). However, the indirect effects of ear diameter through either oil content in grain or ear length were negligible values (0.022 and 0.049, respectively). The indirect effect for oil content in grain through ear diameter was negligible value (0.036), also via ear length was negative and negligible value (-0.023). Ear length gave through oil content in grain, a negative and negligible indirect effect (-0.040). On the other hand, the indirect effect of ear length through ear diameter was positive and relatively low (0.134). The direct and joint effects for each of ear diameter, oil content in grain and

ear length on grain yield variation are presented in Table (5). Data indicated that the main sources of grain yield variation in order of relative importance (RI%) of direct effect for ear diameter was 26.01%, followed by the relative importance of direct effect for oil content in grain 10.11% and the relative importance for ear diameter through ear length 4.99%, followed by the relative importance of direct effect for ear length 3.46%, then the relative importance for ear diameter through oil content in grain 2.27%. The relative importance of total contribution of these mentioned traits reached 45.36% while the residual effects were 54.64% of the total phenotypic variation of grain yield.

Table (5). Relative importance (direct and joint effects) in percent of grain yield.

Source of variation	CD	RI%
1Ear diameter	(X ₁)0.2601	26.01
2Oil content in grain	(X ₂)0.1011	10.11
3Ear length	(X ₃) 0.0346	3.46
4	(X ₁) × (X ₂)	0.0227 2.27
5	(X ₁) × (X ₃)	0.0499 4.99
6	(X ₂) × (X ₃)	-0.0148-1.48
Residual	0.5464	54.64
Total relative importance		45.36%

CD denote coefficient of determination. RI% denotes relative importance.

It is worthy to note that the direct effect of ear diameter as well as oil content in grain proved to be the major grain yield contributors. Some of these results mentioned by other workers [Amin *et al.*, (2003), Al-Ahmad, (2004), Sadek *et al.*, (2006), Fabijanac *et al.*, (2006), Abou- Deif, (2007), Wannows *et al.*, (2010), Rafiq *et al.*, (2010) who revealed that ear diameter and/or oil content in grain are considered as the main component of grain yield variation].

Conclusion

It can be concluded from our results that the partial

and over-dominance gene effects played a major role in inheritance of starch, protein and oil content in grain while over-dominance gene effects were the most importance in inheritance of grain yield, ear length, ear diameter, 100-kernel weight and number of kernel per row. On the other hand, ear diameter as well as oil content in grain proved to be the most effective selection criteria in maize breeding programs aiming high grain yield capacity.

REFERENCES

Abd El Sattar, A. A. and M. H. Motawea (1999). Estimation of the relative importance of characters contributing in yield of diallel cross of maize. *J. agric. Sci. Mansoura Univ.* 24(3): 945-957.

Abou Deif, M. H. (2007). Estimation of gene effects on agronomic characters in five hybrids and six population of maize (*Zea mays L.*). *World. J. of Agric. Sci.* 3(1): 86–90.

Agriculture statistics publication (2008). Ministry of Agriculture and Agrarian Reform. Damascus. Syria.

AL- Ahmad, A. S. (2004). Genetic parameters for yield and its components in some new yellow maize crosses. Ph.D. Thesis, Fac. of Agric., Ain Shams Univ., Egypt.

Al-kaddoussi, A. R; H. A. Rabie; F. A, El-Zeir and S. Th. M. Mousa (2004). General and specific combining ability for some physiological characters and yield of maize (*Zea mays L.*). *Zagazig. J. Agric. Res.* 31(1): 1 – 30.

Amer, E. A. and H. E. Mosa (2004). Gene effects of some plant and yield traits in four maize crosses. *Minufiya J. Agric. Res.*, 1 (29): 181 – 192.

Amin, Amal Z.; H. A. Khalil and R. K. Hassaan (2003). Correlation studied and relative importance of some plant characters and grain yield in maize single crosses. *Arab Univ. J. Agric. Sci. Ain Shams Univ.*; Cairo, 11(1): 181-190.

Amit, D and V. N. Joshi. (2007). Heterosis and combining ability for quality and yield in early maturing single cross hybrids of maize (*Zea mays L.*). *Indian. J. of. Agric. Res.* 41 (3): 8240-8245.

Aydin, N.; S. Gökmen; A. Yildirim; A. Öz; G. Figliuolo and H. Budak (2007). Estimating genetic variation among dent corn inbred lines and topcrosses using multivariate analysis. *Journal of Applied Biological Sciences.*, 1(2): 63–70.

Cockerham, C. C. (1961). Implication of genetic in maize variance in a hybrid breeding program. *Crop. Sci.* 1: 47-52.

Dewey, D. R and Lu K. H. (1959). A correlation and path coefficient analysis of components of crested wheat grass seed production . *Agron . J.* 51 : 515 – 518.

Edward, J. W. and K. R. Lamkey (2002). Quantitative genetics of inbreeding in a synthetic maize population. *Crop Sci.* 42: 1094 -1104.

El-Hawary, M. I.; Amal. H. Selim and A. M. El-Galfy (2003). Variability assessment of some maize (*Zea mays L.*) elite inbred lines using morphological and molecular methods. *Egypt. J. plant breed.* 7(1): 109 – 125.

El Hosary, A. A. and A.A. Abd El Sattar. (1998). Estimation of gene effects in maize breeding program for some agronomic characters. *Bull. Fac. Agric. Cairo Univ.* 49:501-516.

El-Shouny, K. A.; Olfat. H. El-Bagoury; K. I. M. Ibrahim and S. A. Al-Ahmad (2005). Genetic parameters of some agronomic traits in yellow maize under two planting dates. *Arab Univ. J. Sci. Ain Shams Univ. Cairo*, 13(2): 309 – 325.

Eshghi, R. and E. Akhundova (2009). Genetic analysis of grain yield and some agronomic traits in hulless barley. *Afr. J. Agric. Res.* Vol. 4(12): 1464-1474.

Fabijanac, D.; B. Varga.; Z. S. Jac and D. gribes. (2006). Grain yield and quality of semi flint maize hybrids at tow sowing sates. *Agric. Cons. Sci.* 2 :45 – 50.

FAO (2009). FAO Statistical Databases. Food and Agriculture Organization of the United Nations, Rome, available online at: <http://faostat.fao.org/default.aspx>

Griffing, B. (1956). Concept of general and specific combining ability in relation to diallel crossing systems. *Australian J. Biol. Sci.* 9:463–493.

Hallauer, A. R. and Miranda Fo. (1981). *Quantitative genetics in maize breeding*. 1st Ed. Iowa state Univ. Press. Ames, Iowa.

Haq .M. IUL.; S. U. Ajmal.; M. munir and M. Gulzar.(2010). Gene Action Studies of different quantitative traits in maize. *Pak. J. Bot.* 42(2): 1021-1030.

Khalil, A. N. M. (1999). Genetic effects estimated from generation means in two maize crosses. *Minufiya J. Agric. Res.*, 24 (6): 1911 – 1924.

Mather, K.(1949). Biometrical Genetics. Dover publication, Inc., New York.

Mittelmann, A.; J. B. de Miranda Filho.; G. J. M. M. de Lima.; C. Hara-Klein and R. T. Tanaka (2003). Potencial da população de milho ESA23B para omelhoramento dos teores de proteína e oleo. *Sci. agric. (Piracicaba, Braz.)* 2:60.

Najeeb, S.; A. G. Rather; G. A. Parry; F. A. Sheikh and S. M. Razvi (2009). Studies on genetic variability, genotypic correlation and path coefficient analysis in maize under high altitude temperate ecology of Kashmir. *Maize Genet. Co- Newsletter.*, 83: 1-8.

Rafiq .Ch. M.; M. Rafique.;A. Hussain and M. Altaf.(2010). Studies on hertability, correlation and path analysis in maize (*Zea mays* L.). *J. Agric. Res.* 48(1).

Sadek, S. E.; M. A. Ahmed and H. M. Abd El-Ghaney (2006). Correlation and Path coefficient analysis in five parents inbred lines and their six white maize (*Zea mays* L.) single crosses developed and grown in *Egypt. J. App. Sci. Res.*, 2(3): 159-167.

Selvaraj, C. I.; P. Nagarajan and L. D. Vijendra. (2006). Heterotic expression and combining ability analysis for qualitative and quantitative traits in inbreds of maize (*Zea mays* L.). *India. Crop. Res.* 32(1): 77-85.

Shamim, Z.; A. Bakhsh and A. Hussain. (2010). Genetic variability among maize genotypes under climatic conditions of Kotli (Azad Kashmir). *World Appplied. Sci.J.8(11):1356-1365.*

Smith, H. H. (1952). Fixing transgressive vigor in *Nicotiana rustica*. Heterosis, Iowa State College Press, Ames, Iowa, U. S. A.

Snedecor, G. W. and W. G. Cochran. (1981). Statistical methods. 6th (Edit). Iowa Stat. Univ. Press. Ames. Iowa. U. S. A.

Soengas, P.; B. Ordás; R. A. Malvar; P. Revilla and A. Ordás (2006). Combining abilities and heterosis for adaptation in flint maize populations. *Crop Sci.*, 46: 2666-2669

Sprague, G. F. (1963). Orientation and objectives In “ Statistical genetics and plant breeding” Nat. Acad. Sci. N. R. C. Pub. 982. IX- XV.

Srdić, J.; A. Nikolić and Z. Pajić. (2008). SSR markers in characterization of sweet corn inbred line . *Genetika.* 40 (2):169-177.

Sumathi, P; Suthamathi, P.; Geetha, K. (2007). Combining ability studies on quality characters in Cumbu napier hybrids. *Indian Journal of Genetics and Plant Breeding* (Tamil Nadu Agricultural University, Paiyur (India). Regional Research Stn.). (May 2007) v. 67(2) p. 203 - 205

Tabassum, M. I. (2004). Genetics of physiological ability traits in (*Zea mays* L.) under normal and water stress condition. Ph.D. Univ. Of. agri. Faisalabad. Pakistan.

Tabassum, M. I.; M. Saleem.; M. Akbar.; M. Y. Ashraf and N. Mahmood. (2007). Combining ability studies in maize under normal and water stress condition. *J. Of. Agric. Res.* 45 (4).261-268.

Wannows, A. A.; H. K. Azzam and S. A. Al-Ahmad (2010). Genetic variances, heritability, correlation and path coefficient analysis in yellow maize crosses (*Zea mays* L.). *Agric. Boil. J. N. Am.* 1(4): 630 – 637.

Wright, S. (1934). The method of path coefficient. *Ann. Math. Stat.* 5; 161-215.

